Characterization of fine particles using optomagnetic measurements.
نویسندگان
چکیده
The remanent magnetic moment and the hydrodynamic size are important parameters for the synthesis and applications of magnetic nanoparticles (MNPs). We present the theoretical basis for the determination of the remanent magnetic moment and the hydrodynamic size of MNPs with a narrow size distribution using optomagnetic measurements. In these, the 2nd harmonic variation of the intensity of light transmitted through an MNP suspension is measured as a function of an applied axial oscillating magnetic field. We first show how the measurements of the optomagnetic signal magnitude at a low frequency vs. magnetic field amplitude can be used to determine the MNP moment. Subsequently, we use linear response theory to describe the dynamic non-equilibrium response of the MNP suspension at low magnetic field amplitudes and derive a link between optomagnetic measurements and magnetic AC susceptibility measurements. We demonstrate the presented methodology on two samples of commercially available multi-core MNPs. The results compare well with those obtained by dynamic light scattering, AC susceptibility and vibrating sample magnetometry measurements on the same samples when the different weighting of the particle size in the techniques is taken into account. The optomagnetic technique is simple, fast and does not require prior knowledge of the concentration of MNPs and it thus has the potential to be used as a routine tool for quality control of MNPs.
منابع مشابه
Microwave–Assisted Hydrothermal Synthesis and Optical Characterization of SnO2 Nanoparticles
Semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that are not present in their bulk counterparts. In this work, extremely fine and pure SnO2 nanoparticles of ~1.1 nm size were synthesized by a solution process, in which amorphous precipitate of SnO2 was crystallized by microwave heating. The particles sizes varied from ~1.1 to ~2.7 nm. By XRD analy...
متن کاملFabrication and Characterization of Novel Mixed Matrix Polyethersulfone Based Nanofiltration Membrane Modified by Ilmenite (TECHNICAL NOTE)
This study is focused on fabrication and characterization of mixed matrix poly ether sulfone based nanofiltration membrane by phase inversion method. The effect of different amounts of Ilmenite (FeTiO3) particles as inorganic filler additive in the casting solution on physic-chemical characteristics of membranes was studied. Scanning electron microscopy, surface analysis, water content, contact...
متن کاملPreparation and Characterization of Microfiltration Membrane Embedded with Silver Nano-Particles
The microfiltration 0.2 µm Cellulose Acetate (CA) membrane was modified by embedding antibacterial silver nano-particles in the membrane pores. This novel technique was developed to enhance the capability of the microfiltration membrane for removing microorganism including bacteria. The prepared membrane was characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spe...
متن کاملExperimental Study on Diesel Exhaust Particles Agglomeration Using Acoustic Waves
Diesel exhaust particles are a complex mixture of thousands of gases and fine substances that contain more than 40 different environmental contaminants. Being exposed to these exhaust particles (called soot) can cause lung damage and respiratory problems. Diesel particulate filters are used in many countries for mobile sources as a legal obligation to decrease harmful effect of these fine pa...
متن کاملPreparation and characterization of Epoxy/Lead oxide nano-composite for shield against gamma and X-rays
Polymer nano-composites are a group of materials that represent proper mechanical, chemical, thermal and optical properties due to the presence of certain percentages of a filler in a polymeric matrix. In this study lead oxide nanoparticles were prepared by direct precipitation method. Then the lead oxide-epoxy resin nanocomposite was prepared by mixing (without solvent) with different weight p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 13 شماره
صفحات -
تاریخ انتشار 2017